Soybean Effects on Soil Nitrogen Availability in Crop Rotations
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ABSTRACT

Soybean [Glycine max (L.) Merr.] production contributes signifi-
cantly to the N supply for a following corn (Zea mays L.) crop, even
though soybean N budget studies indicate that N removed in grain may
substantially exceed biological fixation. Information on the N status of
cereal crops during the 2nd yr following soybean may help resolve this
issue. This study reports on N effects of soybean on yield response of
succeeding cereal crops and soil N availability based on data from a
15-yr crop rotation experiment (1977-1991) on a Rozetta siit loam soil
(Typic Hapludalfs) at Lancaster, WI. We evaluated the yields of corn
and oat (Avena sativa L.) succeeding soybean and alfalfa (Medicago sa-
tiva L.) in corn-soybean-corn-oat-alfalfa (CSCOM) and corn-corn-
oat-alfalfa-alfaifa (CCOMM) crop rotations. Fertilizer N (0, 56, 112,
and 224 kg ha~") was applied only to corn, but NOs-N carryover usu-
ally affected oat yields as well. The legume fertilizer N replacement values
based on check plot yields and the response function of 3rd-yr cornin a
corn-corn—-corn-alfalfa-alfalfa sequence, were equivalent to 153 and
36 kg N ha~! for the 1st and 2nd yr after alfalfa, respectively, and 75
kg N ha™! for the 1st yr after soybean. In the 2nd yr after soybean
(CSCOM), oat yields were significantly lower than following corn in
the CCOMM rotation. Preplant soil NO; and oat N uptake (1987-1991)
indicated that oat yield differences were due to lower soil N availability
in the CSCOM rotation. The average soybean effect on soil N availabil-
ity in the 2nd yr was equal to a soil N debit of 36 kg N ha~'. This in-
dicates that part of the N contribution of soybean to Ist-yr corn is re-
alized at the expense of subsequent reductions in soil N availability.

ROP SEQUENCE STUDIES show that soybean affects the

N requirements of a following corn crop. Numerous
reports for the U.S. Midwest indicate that soybean har-
vested for grain can supply an average of 45 to 67 kg N
ha™' (1 to 1.5 kg ha™' of N for every 60 kg ha™' of soy-
bean harvested) to a following corn crop (Shrader, 1973;
Baldock et al., 1981; Voss and Shrader, 1984; Schepers
and Mosier, 1991; Bundy et al., 1993). These values rep-
resent an apparent legume-N contribution or legume-N
credit usually estimated through a fertilizer-N replace-
ment value approach. Fertilizer N replacement value is
defined as the amount of fertilizer N required in a corn-
corn sequence to produce yields equivalent to those in a
legume-corn sequence without fertilizer N (Hesterman,
1988). Whether the positive yield responses that are fre-
quently observed where corn follows soybean are due solely
to residual symbiotically derived N or include other stim-
ulatory effects of soybean is unclear (Welch, 1985; Cruse
et al., 1985). Fertilizer-N equivalence estimates may also
include detrimental effects of monoculture (Benson, 1985;
Turco et al., 1990; Vanotti et al., 1995), since responses
have usually been evaluated by comparison with the yield
performance of continuous corn (Lory et al., 1989; Peoples
and Craswell, 1992). In most crop sequence-N fertilizer
experiments, however, the addition of N can compensate
for a large part of the yield differences between legume-
cereal and cereal-cereal sequences (Welch, 1985), indi-
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cating that increased soil N availability has a major role
in the yield-enhancing effect associated with soybean. This
observation supports the presumption that a fraction of
the symbiotically fixed N in a soybean crop will subse-
quently accrue in the soil and benefit a succeeding crop.
In contrast, soybean N budget studies indicate that the
export of N in the seed may substantially exceed biolog-
ical fixation (Ebelhar and Welch, 1981; LaRue and Patter-
son, 1981; Heichel and Barnes, 1984; Herridge and Ber-
gersen, 1988; Peoples and Craswell, 1992), suggesting
that soybean production is depleting rather than enhanc-
ing soil N reserves. Blackmer et al. (1988) reported a more
rapid decrease in soil organic N for corn—soybean sequences
vs. continuous corn in two long-term rotation experiments
in Iowa, which is consistent with the results from soybean
N budget studies.

If soybean grain production results in a net removal of
N from the soil, the reasons for the reduced response to
applied N usually observed in subsequent cereal crops
are not clear. Our objective was to examine sequence effects
on soil N availability and crop N uptake for cereal crops
grown during the 2nd yr following soybean in a long-term
crop rotation experiment. Evaluation of information from
the 2nd-yr crop following soybean may contribute to an
improved understanding of the soybean rotation effect.

MATERIALS AND METHODS

The experiment was conducted at the University of Wiscon-
sin Agricultural Research Station near Lancaster, WI (42°51'N,
90°42' W), on a Rozetta silt loam soil (fine, silty, mixed, mesic
Typic Hapludalfs). The study was part of a long-term legume-
cereal rotation experiment, which was established in 1967 (Higgs
et al., 1976; Baldock et al., 1981). Crop yield data included in
this report were obtained between 1977 and 1991 from two 5-yr
crop rotations included in the main experiment. Crop species
were corn (Zea mays L.; Northrup King PX20, Pioneer 3780,
Pioneer 3615, or Pioneer 3475); oat (Avena sativa L.; ‘Dal,
‘Froker’, or ‘Ogle); alfalfa (Medicago sativa L.; ‘Vernal’, ‘Apollo,
‘Blazer’ or ‘Legend’); and soybean [Glycine max (L.) Merr.; ‘Cor-
soy’, ‘Hodgson), ‘Elgin), or ‘Trelay 264’]. These species were com-
bined in corn-soybean-corn-oat-alfalfa (CSCOM) and corn-
corn-oat-alfalfa-alfalfa (CCOMM) crop sequences. Yield data
corresponding to 3rd-yr corn in a CCCMM sequence were used
as a control treatment to evaluate corn response to N rate in
the CSCOM and CCOMM rotations. Four levels of N fertilizer:
0, 56, 112, and 224 kg N ha™' were applied as ammonium ni-
trate before spring tillage to every phase of corn each year
(1977-1991), but no fertilizer N was applied to any other crop.
Every crop rotation-phase combination was grown annually in
a 6.1- by 36.6-m main plot. These main plots were divided to
accommodate the N treatments (subplots). The experimental
design was a split plot, where crop rotation phases were assigned
to main plots at the start of the experiment in a randomized com-
plete block design with two replicates. Each rotation-phase treat-
ment was repeated on the same plot every 5 yr (cycle).

Abbreviations: CCCMM, corn-corn-corn-alfalfa—alfalfa; CCOMM, corn-
corn-oat-alfalfa-alfalfa, CSCOM, corn-soybean-corn-oat-alfalfa; FRY,
fertilizer replacement value. Underscores in a rotation code indicate the
phase of the rotation under discussion.
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The plots were chisel plowed in the fall and disked in the
spring. The planting rates were 59 000 to 72 000 seeds ha™"' for
corn, 108 kg ha™' for oat, 13.4 to 16.8 kg ha™' for alfalfa, and
84 kg ha™' for soybean. Corn and soybean were planted in
76-cm rows in May (1-15 May), and alfalfa and oat were drilled
simultaneously in 18-cm rows in April (6-21 April). Adequate
P and K was maintained for all crops throughout the experi-
ment. Plots were limed to maintain a pH of 6.9. Soil tests (Schulte
et al., 1987) for pH, available P (mg kg~'), and exchangeable
K (mg kg™") in 1990 N check plots (0- to 20-cm depth) were
6.9, 21, and 150 in CSCOM and 6.7, 27, and 173 in CCOMM,
respectively. Herbicides, insecticides, and usually two cultiva-
tions were used to control corn and soybean pests (Baldock et
al., 1981; Vanotti et al., 1995). Alfalfa was harvested on a three-
cut system, and grain harvests were made in the other three crops.
The yields of corn, oat, soybean, and alfalfa are reported at 155,
140, 140, and O g kg™' moisture content, respectively.

Soil and plant N tests were performed during a complete ro-
tation cycle in 1987 through 1991 to evaluate soil N availability
for a 2nd-yr cereal crop following soybean and a 3rd-yr cereal
crop following alfalfa in CSCOM and CCOMM. Profile
soil NOs-N and NH,-N concentrations were measured in the
spring (623 April) in 30-cm increments to a depth of 90 cm.
At physiological maturity, oat was harvested to measure total
plant N uptake. Specific experimental procedures for soil and
plant N determinations were previously reported by Vanotti and
Bundy (1994). Soil organic C and N concentrations and min-
eralizable N were measured in 1990 N check plots to a depth
of 20 cm. Soil organic C was determined using a modified Me-
bius procedure (Yeomans and Bremner, 1988), total soil organic
N was determined by Kjeldahl! digestion (Nelson and Sommers,
1972), and mineralizable N was determined in 40-wk aerobic
incubation at 35°C (Bundy and Meisinger, 1994).

Data were subjected to analyses of variance for the appro-
priate experimental design (SAS Institute, 1988). Significant
differences among N X rotation treatment means were evalu-
ated using a least significant difference (LSD) test at the 0.05
level, computed with variation (mean square error) among sub-
plots (Gomez and Gomez, 1984).

RESULTS AND DISCUSSION

Corn grain yields obtained in the Lancaster crop rota-
tion study for the period from 1977 to 1991 (Table 1) il-
lustrate the effect of legume crops on corn yield response
to applied N that is typical of many crop rotation exper-
iments throughout the midwestern USA. Response data
show that an alfalfa crop supplied most of the N required
by a following corn crop, and a lower but still substantial
amount of the total N requirement of 2nd-yr corn in the
sequence (Table 1). The net effect of legumes in reducing
the fertilizer-N needs of subsequent corn is also evident

in the soybean-corn sequence. With increased years of
corn following alfalfa, the yields of unfertilized corn de-
clined, while the yield responses to applied N increased
proportionally. Addition of N removed most of the corn
yield differences among rotation-phase treatments (Table 1).

. Fertilizer-N replacement values (FRV) were calculated

to quantify the relative legume N effect on succeeding corn,
based on the yield response function for 3rd-yr corn in
the CCCMM rotation (Table 1). The FRVs were calcu-
lated by equating this response function to the average yields
obtained at the 0 kg N rate, and solving for N.

The choice of rotated corn (CCCMM) for the control
treatment instead of the continuous corn sequence in this
experiment was due to detrimental effects of long-term
monocropping on soil characteristics such as soil organic
N content and N supplying capability (Vanotti et al., 1995),
distorting both the N response curve and derived FRV.
For example, yields of unfertilized continuous corn were
halved in <10 yr, while yields of 3rd-yr corn without
N addition in the CCCMM rotation remained constant
throughout the study (1967-1991). Results of the FRV cal-
culations showed that the apparent N contribution of soy-
bean to the first phase of corn was about half the amount
contributed by alfalfa, but twice the N value correspond-
ing to 2nd-yr corn following alfalfa (Table 1). Both soy-
bean grain yields and alfalfa dry matter yields were not
affected by N rates applied to corn, averaging 2.60 and
9.31 Mg ha™', respectively.

Yield patterns and N responses of cereal crops after
soybean were markedly different from those observed in
the alfalfa—cereal sequence (Fig. 1). The greater apparent
N contribution of soybean to Ist-yr corn relative to CCOMM
(Fig. 1a) contrasts with the yield responses of unfertilized
oat in the subsequent year (Fig. 1b). Effects of crop ro-
tation, corn N treatments, and their interaction on oat grain
yields were significant at the P < 001 probability level
(Table 2). Where no N fertilizer was previously applied,
oat yields in the soybean sequence (CSCOM) were 0.53
Mg ha™' (26%) lower than CCOMM (1977-1991 aver-
age). As with corn, the sequence effect on oat yields de-
creased with increasing levels of available N, in this case
from carryover fertilizer N. Yield differences between crop
rotations were not due to long-term N rate effects, since
the same amounts of N were applied in both rotations.
Results of studies in Minnesota (Crookston et al., 1991)
showed that 2nd-yr corn yields in soybean—corn rotations
were significantly lower than in continuous corn. These
yield patterns were somewhat surprising, since a gradual

Table 1. Effect of legume and fertilizer N on corn yields in legume-cereal crop rotations, Lancaster, W1, 1977 to 1991.

. N rate applied to corn, kg ha~!
Crop rotation

and phaset 0 56 112 224 P>Fi Cv FRV§
Corn yield, Mg ha~! % kg N ha™!
CSCOM 7.61a9 8.10b 8.41b 8.16b 0.006 12.7 75
CCOMM 8.06a 8.46a 8.53a 8.46a NS 11.1 153
CCOMM 6.79a 7.82b ) 8.31c 8.38¢ 0.001 13.2 36
CCCMM 4.90a 7.28b 7.96¢ 8.10c 0.001 12.9 0

4+ C = corn, S = soybean, O = oat, M = alfalfa. Underscores indicate the phase of the rotation for which data are presented.

t P > F: the probability that the tabular F-ratio exceeds the F-ratio calculated by analysis of variance. NS, not significant at P < 0.10.

§ FRYV, fertilizer N replacement value of the preceding legume. Estimates are based on the N response function (Mitscherlich-Spillman model) for the control,
3rd-yr corn following alfalfa (CCCMM): Y = 8.14 — 3.24 exp(—0.02413N), R? = 1.00.

{ Within rows, means followed by the same letter are not significantly different by LSD at the 0.05 level. Means are averages of 15 yr and two replications.
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Fig. 1. Soybean effect on (a) subsequent corn grain yields and (b) sub-
sequent oat grain yields at varying levels of N fertilizer applied to
corn in the Lancaster, WI, rotation study. Each point is a mean of
30 observations over 15 yr. LSD applies for comparisons between
any two means.

decrease in legume N contribution and yields of subse-
quent cereal crops in succeeding years after a legume would
be expected (e.g., alfalfa~corn sequence in Table I).
The lower oat yields in the CSCOM rotation relative
to the CCOMM rotation (Fig. 1b) appear to be due to
a soybean effect rather than to a difference in soil N avail-
ability related to the number of years of alfalfa in the two
rotations. This is supported with previous data obtained
in this experiment (1972-1976), showing that unfertilized
oat yields were similar in three crop sequences involving
corn, oat, and alfalfa whether the sequences contained
1,2, or 3 yr of alfalfa (Table 3). However, oat yields were
lower in the CSCOM sequence. Further evidence that the
soybean effect on oat yield is due to short-term organic N
cycling rather than to long-term effects on soil organic mat-
ter characteristics is provided by the nearly identical soil
organic C and N concentrations in the two rotations in
1990. Average (SE) organic C and N concentrations in the
CSCOM rotation were 16.6 (0.7) and 1.33 (0.04) g kg~',
respectively. Corresponding values for the CCOMM ro-
tation were 16.3 (0.1) and 1.33 (0.04) g kg™', respectively.
Measurements taken in 1987 through 1991 showed that
both oat N uptake and soil NOs;-N content in the 0- to
30-cm depth were significantly (P < 0.01) affected by crop
rotation (Table 2), but the effect of rotation on soil
NOs-N content in the 30- to 60-cm and 60- to 90-cm
depths, or soil NH4-N content at all depths, was not sig-
nificant (Vanotti and Bundy, 1994). Data in Fig. 2 support
the conclusion that differences in N availability caused
the rotational differences in oat yields illustrated in Fig.
Ib, since N uptake and soil NO; differences followed the
same pattern and were eliminated at the high N rate. Crop
rotation effects on soil NOs-N reflect changes in the min-
eralizable fractions of soil organic N pools. Long-term
aerobic incubations in the laboratory showed that the av-

Table 2. Analysis of variance summary for the effects of crop rotation and fertilizer N applied to corn on yields of oat and the preceding
corn crop (1977 to 1991), and on spring soil NOs-N content before seeding oat and oat total N uptake (1987 to 1991).+

Soil NO;-N
Source of variation df Corn yield Oat yield Oat N uptake (0 to 30 cm)
Mean square values}
Blocks 1 0.042 0.743 6 391
Rotation (R) 1 3.825 7.873%%* 11 992%** 5 628***
Year in a cycle (Y)§ 4 49 347x** 7. 172%%% 13 996**#* 35 145%**
RXxY 4 1.035 0.061 2253* 370
Error a 9 2.589 0.311 432 246
N rate (N) 3 23.249%** 7.076%%* 12 664*** 16 010***
R XN 3 4,531 %% 0.448%** 692 1219**
Y XN 12 3.514%*x 0.200** 311 5 610%**
R XY XN 12 0.580 0.117 352 1012%*
Error b 30 0.498 0.066 329 277
Cycle (C) 2 1.852 0.585%*
R x C 2 0.333 0.269
Y xC 8 52.598*** 4.110%**
N x C 6 2.051 0.272*
RXxYxC 8 3.043** 0.216*
RXNXxC 6 0.578 0.089
Y XNxC 24 1.468 0.096
RxYXxNxC 24 0.436 0.055
Error ¢ 80 1.055 0.100
CV, % 13.1 14.4 17.3 24.5

*, %k %k Significant at the 0.05, 0.01, and 0.001 probability levels, respectively.

t Crop rotation: CSCOM and CCOMM (where C = corn, S = soybean, O = oat, and M = alfalfa; underscores indicate the phases under discussion).
Rotation phase x N level means are shown in Fig. 1 for grain yields and in Fig. 2 for soil NO3-N and oat N uptake.
1 Based on Mg ha~! for corn and oat grain yields, kg ha~! for oat N uptake and soil NO3-N.

§ Rotation phase treatments were repeated on the same plots every 5 yr.
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Table 3. Oat yields in four crop rotations, Lancaster, W1, 1972 to 1976.

N rate applied to corn, kg ha™'

Crop rotation or
source of variationt df 0 84 168 336

Oat yield, Mg ha~!

COMMM§ 1.63% 1.77 2.15 2.16
CCOMM 1.67 1.80 2.25 2.25
CCCOM¢§ 1.61 1.76 2.12 2.39
CSCOM 1.28 1.55 1.98 2.20
ANOVA P>Fy
Crop rotation 3 0.045 NS NS NS
CSCOM vs. others 1 0.006 0.056 NS NS
CSCOM vs. CCCOM 1 0.029 NS NS * NS
COMMM vs. CCCOM 1 NS NS NS NS
CV, % 19.9 17.6 19.2 18.9

"+ C = corn, § = soybean, O = oat, M = alfalfa. Underscores indicate the
phase of the rotation for which data are presented.

+ Means are averages of 5 yr and two replications.

§ Rotation discontinued in 1977.

{ P > F at the 0.10 significance level.

erage amounts of N mineralized from soils in the oat plots
of the CCOMM and CSCOM rotations were 159 and
142 mg kg~!, respectively, and were significantly differ-
ent (P < 001, CV = 5.3%). This difference in mineral-
izable N is equivalent to 51 kg N ha™'. When averaged
across years (1987-1991) and the two lower N rates (0 and
56 kg N ha™"), preplant soil NO3-N contents in CSCOM
and CCOMM, respectively, were 34 and 59 kg N ha™"
in the 0- to 30-cm depth and 62 and 98 kg N ha™' in the
0- to 90-cm depth. Corresponding oat N uptake values
were 69 kg N ha~' (CSCOM) and 102 kg N ha™'
(CCOMM). Thus, most of the difference in oat N uptake
between crop rotations was accounted for by differences

in the amount of soil NOs;-N present in the 0- to 30-cm .

depth at the beginning of the growing season, and addi-
tional absorption of subsoil NO3-N or mineralized N
probably accounted for the remainder of the difference
in N recovered by oat. A 3-yr experiment on a Plano silt
loam (fine-silty, mixed, mesic Typic Argiudolls) at Janes-
ville, WI (Bundy et al., 1993), showed that total N uptake
of Ist-yr corn following soybean receiving a 0 N rate was
always higher than those of continuous corn (mean = 188
and 121 kg N ha™', respectively), whereas N uptake of
2nd-yr corn was the lowest (mean = 104 kg N ha™'),
which is consistent with results shown in Fig. 2. These
data suggest that part of the yield-enhancing effect of soy-
bean on a Ist-yr cereal crop is realized at the expense of
subsequent reductions in soil N availability.

The average soybean effect on soil N availability in the
2nd-yr cereal crop (CSCOM) compared with that in 3rd-
yr cereal after alfalfa (CCOMM) was equal to a soil N
debit of 36 kg N ha™'. The control sequence phase
(CCOMM) used to measure this soil-N debit is equivalent
to 3rd-yr corn in CCCMM (Table 1), and corn N fertilizer
recommendations (before legume-N adjustment) are usu-
ally based on =3 yr of continuous corn (Voss, 1969). Our
data indicate that a preplant soil NO; test can be used to
confirm the lower N availability that may occur in the 2nd
yr after soybean.

While the specific mechanisms responsible for the re-
duced N availability to 2nd-yr cereal crops following soy-
bean are unknown, previous work suggests that this phe-
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Fig. 2. Soybean effect on soil NO3-N content (0 to 30 cm) and total oat
N uptake at various corn N fertilizer rates. Each point is a mean
of 10 observations over 5 yr. LSD applies for comparisons between
any two means.

nomenon may be related to cycling of N between crop
residues and soil organic N fractions and/or to changes
in soil and plant biological activity. Our data do not in-
dicate whether this soil-N depletion occurred at the soy-
bean phase or at the Ist-yr corn phase. In both cases, N
availability is increased for Ist-yr cereal crops following
soybean and reduced in the 2nd yr due to depletion of
the soil’s available N pool. Reduced N availability in the
2nd yr following soybean is consistent with N budget studies
(e.g., Heichel and Barnes, 1984) showing that soybean
removes more N from the soil than is fixed symbiotically.
The positive N effect observed with 1st-yr corn following
soybean (Table 1) is probably due to N released from soy-
bean residues, and represents a recycling of the soil N
accumulated in these residues. The N in soybean residues
is rapidly mineralized and is usually taken up almost com-
pletely by subsequent corn (Power et al., 1986).

Our results also support the hypothesis that soybean
production may enhance soil N mineralization and sub-
sequent N uptake by Ist-yr corn through increased biolog-
ical activity or shifts in soil microbial populations. For
example, Yaacob and Blair (1980) found that the addition
of soybean residues to soil increased uptake of native soil
organic N by rhodesgrass (Chloris gayana Kunth) in a
greenhouse study. Enhanced N availability has also been
attributed to root-induced N mineralization (Clarholm,
1985, 1989), in which C released into the soil from roots
enhances the availability of soil N to plants by stimulating
microbial cycling. The possibility that the soybean sequence
effect could result from changes in the type of microor-
ganisms colonizing the corn rhizosphere is supported by
the work of Fryson and Oaks (1990), who observed a sig-
nificant corn growth response when pots containing corn
plants were inoculated with a variety of the legume soils,
including soybean. No growth response was detected when
legume-soil inoculants were sterilized or when soils pre-
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viously used for corn production were used as the inoc-
ulant. Recent work (Onyango and Clegg, 1993) involving
residue removal and transfer following corn and soybean
production suggests that both N mineralization from soy-
bean residue and enhanced soil N availability contribute
to increased N availability to Ist-yr corn following soybean.

CONCLUSIONS

Our results indicate that the N cycle processes involved
in the N contribution of soybean to a following corn crop
are different from those associated with alfalfa N contri-
butions. The reduction in soil-N availability observed the
2nd yr following soybean suggests that part of the N con-
tribution of soybean to Ist-yr corn is realized at the ex-
pense of subsequent reductions in soil-N availability. It
is possible that soybean production stimulates soil micro-
organisms that enhance soil N mineralization and corn
uptake in the lIst yr following soybean resulting in a de-
pletion of readily available soil N in the 2nd yr after soy-
bean. Further research is needed to study N dynamics in
soybean-corn crop sequences and the biology involved
in the soybean rotation effect. ’
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